Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vision (Basel) ; 7(4)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37873896

RESUMEN

(1) Background: Saccadic eye movements are rapid eye movements aimed to position the object image on the central retina, ensuring high-resolution data sampling across the visual field. Although saccadic eye movements are studied extensively, different experimental settings applied across different studies have left an open question of whether and how stimulus parameters can affect the saccadic performance. The current study aims to explore the effect of stimulus contrast and spatial position on saccadic eye movement latency, peak velocity and accuracy measurements. (2) Methods: Saccadic eye movement targets of different contrast levels were presented at four different spatial positions. The eye movements were recorded with a Tobii Pro Fusion video-oculograph (250 Hz). (3) Results: The results demonstrate a significant effect of stimulus spatial position on the latency and peak velocity measurements at a medium grey background, 30 cd/m2 (negative and positive stimulus polarity), light grey background, 90 cd/m2 (negative polarity), and black background, 3 cd/m2 (positive polarity). A significant effect of the stimulus spatial position was observed on the accuracy measurements when the saccadic eye movement stimuli were presented on a medium grey background (negative polarity) and on a black background. No significant effect of stimulus contrast was observed on the peak velocity measurements under all conditions. A significant stimulus contrast effect on latency and accuracy was observed only on a light grey background. (4) Conclusions: The best saccadic eye movement performance (lowest latency, highest peak velocity and accuracy measurements) can be observed when the saccades are oriented to the right and left from the central fixation point. Furthermore, when presenting the stimulus on a light grey background, a very low contrast stimuli should be considered carefully.

2.
J Eye Mov Res ; 16(3)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38370528

RESUMEN

The aim of the study was to analyze the stability of dominant and non-dominant eye fixations, as well as the influence of development on fixation stability. The study analyzed fixation stability in 280 school-age children, ranging in age from 7 to 12 years old. Fixation stability was determined by calculating the bivariate contour ellipse area (BCEA). During the fixation task, eye movements were recorded using the Tobii Pro Fusion eye tracking device at a 250 Hz sampling frequency. The results indicate that the fixation stability of dominant and non-dominant eyes, as well as the fixation stability of each eye regardless of dominance, improves as children grow older. It was found that for 7 and 8- year-old children, fixation in the dominant eye is significantly more stable than in the non-dominant eye, while in older children, there is no significant difference in fixation stability between the dominant and non-dominant eye.

3.
Ann Dyslexia ; 65(2): 69-83, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911276

RESUMEN

This study includes an evaluation, according to age, of the reading and global motion perception developmental trajectories of 2027 school age children in typical stages of development. Reading is assessed using the reading rate score test, for which all of the student participants, regardless of age, received the same passage of text of a medium difficulty reading level. The coherent motion perception threshold is determined according to the adaptive psychophysical protocol based on a four-alternative, forced-choice procedure. Three different dot velocities: 2, 5, and 8 deg/s were used for both assemblies of coherent or randomly moving dots. Reading rate score test results exhibit a wide dispersion across all age groups, so much so that the outlier data overlap, for both the 8 and 18-year-old student-participant age groups. Latvian children's reading fluency developmental trajectories reach maturation at 12-13 years of age. After the age of 13, reading rate scores increase slowly; however, the linear regression slope is different from zero and positive: F(1, 827) = 45.3; p < 0.0001. One hundred eighty-one student-participants having results below the 10th percentile were classified as weak readers in our study group. The reading fluency developmental trajectory of this particular group of student-participants does not exhibit any statistically significant saturation until the age of 18 years old. Coherent motion detection thresholds decrease with age and do not reach saturation. Tests with slower moving dots (2 deg/s) yield results that exhibit significant differences between strong and weak readers.


Asunto(s)
Desarrollo Infantil , Percepción de Movimiento , Reconocimiento Visual de Modelos , Lectura , Adolescente , Factores de Edad , Niño , Femenino , Humanos , Masculino , Psicofísica , Umbral Sensorial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...